Search results for " normal form"
showing 10 items of 15 documents
Normal forms of hyperbolic logarithmic transseries
2021
We find the normal forms of hyperbolic logarithmic transseries with respect to parabolic logarithmic normalizing changes of variables. We provide a necessary and sufficient condition on such transseries for the normal form to be linear. The normalizing transformations are obtained via fixed point theorems, and are given algorithmically, as limits of Picard sequences in appropriate topologies.
Improving the Competency of Classifiers through Data Generation
2001
This paper describes a hybrid approach in which sub-symbolic neural networks and symbolic machine learning algorithms are grouped into an ensemble of classifiers. Initially each classifier determines which portion of the data it is most competent in. The competency information is used to generated new data that are used for further training and prediction. The application of this approach in a difficult to learn domain shows an increase in the predictive power, in terms of the accuracy and level of competency of both the ensemble and the component classifiers.
Computing Sum of Products about the Mean with Pairwise Algorithms
1997
We discuss pairwise algorithms, a kind of computational algorithm which can be useful in dynamically updating statistics as new samples of data are collected. Since test data are usually collected through time as individual data sets, these algorithms would be profitably used in computer programs to treat this situation. Pair-wise algorithms are presented for calculating the sum of products of deviations about the mean for adding a sample of data (or removing one) to the whole data set.
Efficient CNF Encoding of Boolean Cardinality Constraints
2003
In this paper, we address the encoding into CNF clauses of Boolean cardinality constraints that arise in many practical applications. The proposed encoding is efficient with respect to unit propagation, which is implemented in almost all complete CNF satisfiability solvers. We prove the practical efficiency of this encoding on some problems arising in discrete tomography that involve many cardinality constraints. This encoding is also used together with a trivial variable elimination in order to re-encode parity learning benchmarks so that a simple Davis and Putnam procedure can solve them.
High order normal form construction near the elliptic orbit of the Sitnikov problem
2011
We consider the Sitnikov problem; from the equations of motion we derive the approximate Hamiltonian flow. Then, we introduce suitable action–angle variables in order to construct a high order normal form of the Hamiltonian. We introduce Birkhoff Cartesian coordinates near the elliptic orbit and we analyze the behavior of the remainder of the normal form. Finally, we derive a kind of local stability estimate in the vicinity of the periodic orbit for exponentially long times using the normal form up to 40th order in Cartesian coordinates.
On prefix normal words and prefix normal forms
2016
A $1$-prefix normal word is a binary word with the property that no factor has more $1$s than the prefix of the same length; a $0$-prefix normal word is defined analogously. These words arise in the context of indexed binary jumbled pattern matching, where the aim is to decide whether a word has a factor with a given number of $1$s and $0$s (a given Parikh vector). Each binary word has an associated set of Parikh vectors of the factors of the word. Using prefix normal words, we provide a characterization of the equivalence class of binary words having the same set of Parikh vectors of their factors. We prove that the language of prefix normal words is not context-free and is strictly contai…
Binary jumbled string matching for highly run-length compressible texts
2012
The Binary Jumbled String Matching problem is defined as: Given a string $s$ over $\{a,b\}$ of length $n$ and a query $(x,y)$, with $x,y$ non-negative integers, decide whether $s$ has a substring $t$ with exactly $x$ $a$'s and $y$ $b$'s. Previous solutions created an index of size O(n) in a pre-processing step, which was then used to answer queries in constant time. The fastest algorithms for construction of this index have running time $O(n^2/\log n)$ [Burcsi et al., FUN 2010; Moosa and Rahman, IPL 2010], or $O(n^2/\log^2 n)$ in the word-RAM model [Moosa and Rahman, JDA 2012]. We propose an index constructed directly from the run-length encoding of $s$. The construction time of our index i…
Entanglement in continuous-variable systems: recent advances and current perspectives
2007
We review the theory of continuous-variable entanglement with special emphasis on foundational aspects, conceptual structures, and mathematical methods. Much attention is devoted to the discussion of separability criteria and entanglement properties of Gaussian states, for their great practical relevance in applications to quantum optics and quantum information, as well as for the very clean framework that they allow for the study of the structure of nonlocal correlations. We give a self-contained introduction to phase-space and symplectic methods in the study of Gaussian states of infinite-dimensional bosonic systems. We review the most important results on the separability and distillabil…
Modified post-bifurcation dynamics and routes to chaos from double-Hopf bifurcations in a hyperchaotic system
2012
In order to understand the onset of hyperchaotic behavior recently observed in many systems, we study bifurcations in the modified Chen system leading from simple dynamics into chaotic regimes. In particular, we demonstrate that the existence of only one fixed point of the system in all regions of parameter space implies that this simple point attractor may only be destabilized via a Hopf or double Hopf bifurcation as system parameters are varied. Saddle-node, transcritical and pitchfork bifurcations are precluded. The normal form immediately following double Hopf bifurcations is constructed analytically by the method of multiple scales. Analysis of this generalized double Hopf normal form …
Normal forms and embeddings for power-log transseries
2016
First return maps in the neighborhood of hyperbolic polycycles have their asymptotic expansion as Dulac series, which are series with power-logarithm monomials. We extend the class of Dulac series to an algebra of power-logarithm transseries. Inside this new algebra, we provide formal normal forms of power-log transseries and a formal embedding theorem. The questions of classifications and of embeddings of germs into flows of vector fields are common problems in dynamical systems. Aside from that, our motivation for this work comes from fractal analysis of orbits of first return maps around hyperbolic polycycles. This is a joint work with Pavao Mardešić, Jean-Philippe Rolin and Vesna Župano…